

Magnetospheric mass and energy transfer: Vlasiator and GUMICS-4 simulation results

Minna Palmroth¹, Anekallu, C.R.², Hietala, H.³, Laitinen, T. V.¹, Kempf, Y.^{1,4}, Hoilijoki, S.^{1,4}, von Alfthan, S.¹, Ganse, U.⁴, and Vainio, R.⁵

¹Finnish Meteorological Institute, Helsinki, Finland
 ²MSSL London, UK
 ³Imperial College, London, UK
 ⁴University of Helsinki, Helsinki, Finland
 ⁵University of Turku, Finland

PARTNERSHIP FOR ADVANCED COMPUTING IN EUROPE This research has received funding from the European Research Council (200141-QuESpace). The simulation runs are provided by the PRACE infrastructure HLRS in Stuttgart and the CSC Grand Challenge pilot use (on sisu).

Outline

Objectives

- Solar wind magnetosheath magnetopause connection
- Two global models
 - Vlasiator FMI's new global kinetic model: Foreshock magnetosheath
 - (GUMICS-4 FMI's global MHD model: Magnetopause)

Vlasiator

- Foreshock 30-s oblique ULF waves
- Plasma transfer through bowshock and magnetosheath

Results

- Foreshock exhibits 30-second oblique ULF waves in in quantitative agreement with observations
- Bow shock exhibits a 30-s oscillation

Modelling the magnetosphere

- State of the art in global simulations
- Global 3-D MHD (FMI: GUMICS-4)
 MHD severely limited in ion physics
- Accurate foreshock magnetopause modelling requires ion physics
- **Improve modelling**: Code coupling or better physical description
- Fluid → hybrid-particle → kinetic
 FMI's Vlasiator
- Global hybrid-Vlasov simulation
- Electrons: MHD fluid
 Protons: distribution functions
- Includes multi-temperature ion kinetics
- No noise (as in hybrid-particle simulations)

Vlasiator version history

t = 0
 t = 2000

8.0

Coupled hybrid-Vlasov

- New field solver
- Access to Europe's largest machines
- First global test runs

ERC grant 2007 Literature

- Prototypes

Vlasiator scheme in a nutshell

- Divide ordinary space into grid cells
- Compute EM-fields in ordinary space
- Each ordinary space cell contains a 3D velocity space
- In velocity space, propagate distribution function with Vlasov equation
 - Couple back to ordinary space to compute EM-fields

Vlasiator requires supercomputers

- A modern code in C++...
- Extendable with latest HPC techniques (Cuda, ADIOS, Hybrid OpenMP-MPI)
 ... with extreme scalability ...

Efficient on 40k cores, target 100k cores^{0.2} Collaboration with top-end EU supercomputing_{0.0} infrastructure (PRACE, CSC)

Run setup

Vlasiator fully 6-D, here 5-D runs (XY plane, 3D velocity space)

- Resolution: 0.13R_E (ordinary), 20 kms⁻¹ (velocity) Run time: 15 min physical time ۲

Overview of runs

Properties of the foreshock waves

Parker spiral run

- Quasi-monochromatic, 30-s period waves
- Angle of propagation close to what is observed
- Compressive, $\delta n/n \sim \delta B/B \sim 0.13$

14

12

10

8

6

2

Eastwood et al. 2002

Field Strength (nT)

Plasma Density (/cm3)

05:08:00

05:1

Properties of the foreshock of waves (0°)

- Time series of 48 foreshock virtual spacecraft
- Wavelengths $2.1 3.4R_E$ parallel to **k**
- Wave "size" perpendicular to k: ~9-16R_E

Bow shock evolution

Density variation in time

New runs with CSC's new sisu

Resolution 227km in ordinary space, Hall term added, 5D

Global MHD: Magnetopause mass transfer

Palmroth et al., 2006 Ann. Geophys.

High p

Pdyn

IMF

240

|MF| = 5 nT

Pdyn = 8 nPa

300

360

= 8 nPa

= 10 nT

FMI's GUMICS-4 simulation

- Ideal conservative MHD
- Adaptive (cell-by-cell) Cart. Grid
- Spherical electrostatic ionosphere

Mass transfer to dayside closed field

- Identify surface formed by last closed field line
- Take mass perpendicular to surface
- Integrate net mass into and out from closed

Conclusions

Vlasiator: New global hybrid-Vlasov simulation Kinetic physics in a global setup

- 5-D run with realistic dipole
- Quasi-parallel foreshock develops
- Foreshock exhibits 30-second oblique ULF waves
 in quantitative agreement with observations

Vlasiator shows that foreshock oblique waves are observed both for 45° IMF and for radial IMF, and bend in many directions

Bow shock exhibits a 30-s oscillation in the radial run

http://vlasiator.fmi.fi

Contact PI minna.palmroth@fmi.fi